首页> 说课稿 >正文

高中立体几何《两个平面垂直的判定定理》优秀说课稿模板

2016年06月21日 浏览:

1教材结构与内容简析:

1.1本节内容在全书及章节的地位;

两平面垂直的判定定理出现在高中立几第一章最后一节,这之前学生已学习了空间两直线位置关系,空间直线和平面位置关系,特别是已学习了直线和平面垂直判定定理,二面角的平面角,这是学习本节内容的基础,而本节内容是第二章多面体、旋转体的学习基础,因此,本节的学习有着极其重要的地位。

1.2数学思想方法分析:

1.2.1从定理的证明过程,面面垂直可转化为线面垂直,就可以看到数学的化归,"降维"思想。

1.2.2在教材所提供的材料中,从建构手段角度分析,可以看到归纳思想,而这一思想中包含着重组的意识和能力。

2教学目标:

根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:

2.1基础知识目标:掌握平面与平面垂直的判定定理及其变

式,能利用它们解决相关的问题。

2.2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。

2.3创新素质目标:引导学生从日常生活中发现判定定理,培养学生的发现意识和能力;判定定理及变式的教学培养学生的重组意识和能力;判定定理在现实生活中的应用培养学生的应用的意识和能力。

2.4个性品质目标:培养学生勇于探索,善于发现,独立的意识,不断超越自我的创新品质。

3教学重点、难点、关键:

重点:判定定理的证明及变式探索

难点:判定定理的变式。

关键:本节课通过判定定理的证明及变式探索,着重培养和发展学生的认知和元认知能力。

件广习途元秀网有8569技软东4f5f升580096bd限司10b1b2be学西慧优科公-

4教材处理

建构主义学习理论认为,建构即认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线联构成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出变式呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。

5教学模式

遵循教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和每一个学生积极参与下进行集体认识的过程,教为主导,学为主体,又互为客体,启动学生主动学习,启发引导学生实践思维过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。

6学法

6.1让学生在认知过程中,着重掌握元认知过程:

6.2使学生把独立思考与多向交流相结合。

7教学程序及设想

7.1设置问题,创设情景

1.提出问题:教室两相邻墙面与地面位置关系如何?在日常生活中,你是如何验证两平面垂直的实际问题。2.(在学生讨论基础上,教师引导)建筑工人在砌墙过程中,为了验证墙面与地面是否垂直,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直

7.2提供实际背景材料,形成假说

1.在实际生活中,建筑工人用一端系有铅锤的线来检查墙面与地面是否垂直,即若紧贴墙面的铅锤的线,如垂直地面,则确定墙面与地面垂直,否则不垂直。2.紧贴墙面的线?这句话的实质意义是什么?(学生讨论,期望回答:即此线在墙所在平面)3.由此实际问题如何抽象为数学问题呢?(学生交流讨论,期望回答:若平面过另一平面的垂线,则平面垂直)

7.3引导探索,寻找解决方案

1.如何证明上述假说呢?从已学过知识可知,只能从定义出发。2.定义的实质是什么呢?即证明两平面垂直的根据是什么?期望回答:即证二面角的平面是直角。3.二面角的平面角如何做出呢?在本假说中,如何做出二面角的平面角?关键在哪里?(学生交流)期望回答:假说中已知平面的垂线故此垂线必垂直于两平面的交线,所以关键在于在已知平面做与公共棱垂直的直线。

7.4总结结论,强化认识

经过引导,学生得出结论,教师强调此定理的含义

有8569慧升580096bd点途网广习司10b1b2be优技得件公限-元秀bdbd科东4f5f软f7e7学西

7.5布置作业

反馈命师1、命题2、命题3的探究过程,并整理证明过程