事件3 基本初等函数的图像
规律方法:
(1)指数函数、对数函数根据底数的不同可分为a>1与0<a<1两类,其函数性质中除了单调性不同外,定义域、值域以及恒过定点(0,1)这几个性质是一致的,要特别注意分类讨论思想的应用;
(2)在识别函数图像时,要善于利用已知函数的性质、函数图像上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项;
(3)对于较复杂方程根的分布情况的判断,可以通过构造函数,利用数形结合的思想研究两函数的图像的交点,从而确定原方程根的分布情况;
-4270司东限根软672e427b升根技优2a17高西慧件量d693f632有b945公秀途元广4280学ab28网科
(4)指、对数函数图像的平移变换仍然遵循“左加右减,上加下减”的原则,对称变换的形式有:y=f(|x|), y=-f(x), y=f(-x), y=|f(x)|以及反函数的图像关于y=x对称等规律.
事件4 基本初等函数的性质
规律方法:
一般会考察复合函数的性质.
网径-4270a02f优2a17高西心是567e1c3e软672e427b有b945径4834科术技公秀司件量d693f632秀升根限根4cbd东学ab28f6e870ef慧4cb7广4280方eb16途元
对于复合函数的单调性问题,应先求函数的定义域,然后将原函数分为内层函数与外层函数,分别判断内层与外层函数的单调性,进而根据“同增异减”的原则判断复合函数的单调性.
对于与单调性有关的含参数问题,构造基本初等函数,然后利用单调性求解是通用方法.
事件5 基本初等函数与其它知识的交汇
规律方法:
技edf9网径是途ad752730元4577-4270a02fa060学ab28f6e870ef限根4cbd心慧4cb7420d费科术东升根高秀公秀有b945径4834广4280方eb16件量d693f632秀软672e427b921a优2a17高西心是567e1c3e463c学司
幂函数、指数函数、对数函数在高考中经常与数列、向量、方程、不等式、三角函数等知识联袂登场,在知识的交汇点处命题. 解决此类问题的关键在于正确理解各类知识,找准知识的结合点并准确应用.