共点力作用下物体的平衡知识点及例题

2017年08月18日 浏览:

共点力作用下物体的平衡

知识梳理

1、共点力的判别:同时作用在同一物体上的各个力的作用线交于一点就是共点力。这里要注意的是“同时作用”和“同一物体”两个条件,而“力的作用线交于一点”和“同一作用点”含义不同。当物体可视为质点时,作用在该物体上的外力均可视为共点力:力的作用线的交点既可以在物体内部,也可以在物体外部。

2、平衡状态:对质点是指静止状态或匀速直线运动状态,对转动的物体是指静止状态或匀速转动状态。

(1)二力平衡时,两个力必等大、反向、共线;

(2)三力平衡时,若是非平行力,则三力作用线必交于一点,三力的矢量图必为一闭合三角形;

(3)多个力共同作用处于平衡状态时,这些力在任一方向上的合力必为零;

(4)多个力作用平衡时,其中任一力必与其它力的合力是平衡力;

(5)若物体有加速度,则在垂直加速度的方向上的合力为零。

3、平衡力与作用力、反作用力


    一对平衡力

一对作用力与反作用力

作用对象

  只能是同一物体,

分别作用在两个物体上

力的性质

可以是不同性质的力

  一定是同一性质的力

作用效果

二者的作用相互抵消

 各自产生自己的效果,互不影响。


共同点:一对平衡力和一对作用力反作用力都是大小相等、方向相反,作用在一条直线上的两个力。

注意:①一个力可以没有平衡力,但一个力必有其反作用力。

②作用力和反作用力同时产生、同时消失;对于一对平衡力,其中一个力存在与否并不一定影响另一个力的存在。

4、正交分解法解平衡问题

正交分解法是解共点力平衡问题的基本方法,其优点是不受物体所受外力多少的限制。

解题依据是根据平衡条件,将各力分解到相互垂直的两个方向上。

正交分解方向的确定:原则上可随意选取互相垂直的两个方向;但是,为解题方便通常的做法是:①使所选取的方向上有较多的力;②选取运动方向和与其相垂直的方向为正交分解的两个方向。在直线运动中,运动方向上可以根据牛顿运动定律列方程,与其相垂直的方向上受力平衡,可根据平衡条件列方程。③使未知的力特别是不需要的未知力落在所选取的方向上,从而可以方便快捷地求解。

解题步骤为:选取研究对象一受力分析一建立直角坐标系一找角、分解力一列方程一求解。

例题评析

【例1】如图所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的。一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球,当它们处于平衡状态时,质量为m1的小球与0点的连线与水平线的夹角为α=60°,两小球的质量比为( )

【分析与解答】质量为m1的小球受力情况:重力m1g,方向向

下;碗对小球的支持力N,方向沿半径方向斜向上;绳对小球的拉力 T,沿绳子方雨斜向上。利用分解法或合成法处理三力平衡,并考虑T=m2g,得

【答案】A

【说明】 (1)解答本题只需由平时掌握的隔离体法,分别对m1m2进行受力分析。由平衡条件和牛顿第三定律即可求解。

(2)力的合成与分解也是解此题的核心之一。


动态平衡问题分析

知识梳理

1、所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态中.

2、图解分析法

对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中做出物体在若干状态下力的平衡图(力的平行四边形),再由动态力的四边形各边长度变化及角度变化确定力的大小及方向的变化情况。

动态平衡中各力的变化情况是一种常见类型.总结其特点有:合力大小和方向不变;一个分力的方向不变,分析另一个分力方向变化时两个分力大小的变化情况.用图解法具有简单、直观的优点。

例题评析

【例2】如图所示,滑轮本身的质量忽略不计,滑轮轴。安在一根轻木杆B上,一根轻绳AC绕过滑轮,A端固定在墙上,且绳保持水平,C端下面挂一个重物,BO与竖直方向夹角θ=45°,系统保持平衡。若保持滑轮的位置不变,改变θ的大小,则滑轮受到木杆的弹力大小变化情况是( )

A、只有角θ变小,弹力才变大

B、只有角θ变大,弹力才变大

慧学技方元上优软司东有科-b6f72d05途公件4eef升4698网限广

C、不论角θ变大或变小,弹力都变大

D、不论角θ变大或变小,弹力都不变

【分析与解答】轻木杆B对滑轮轴O的弹力不一定沿着轻木杆B的线度本身,而应当是根据滑轮处于平衡状态来进行推断,从而得出其方向和大小。TA=TC=G,TA和TC夹角90°不变,所以TA和TC对滑轮作用力不变。而滑轮始终处于平衡,所以轻木杆B对滑轮作用力不变。即与θ无关,选项D正确。

【答案】D