(
2017年高考全国III卷
)
20.(12分)
途广技学-限软上东慧件升科公司a6be优元网4e0b有 已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点,求直线l与圆M的方程.
答案
(1)证明略;(2)见解析
解析
(1)设由
可得
又=4
因此OA的斜率与OB的斜率之积为
所以OA⊥OB,
故坐标原点O在圆M上.
(2)由(1)可得.
故圆心的坐标为
,圆
的半径
.
由于圆过点
,因此
,故
,
即,
由(1)可得.
所以,解得
或
.
当时,直线
的方程为
,圆心
的坐标为
,圆
的半径为
,圆
的方程为
.
当时,直线
的方程为
,圆心
的坐标为
,圆
的半径为
,圆
的方程为
.
考查方向
点与圆、直线与圆、直线与抛物线的位置关系
解题思路
(1)设出点的坐标,联立直线与圆的方程,由斜率乘积为-1,可得OA⊥OB,即得结论;(2)结合(1)的结论求得实数m的值,分类讨论即可求得直线l的方程和圆M的方程
易错点
用根与系数的关系研究直线与圆锥曲线和关系