19. 已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,,
,求证:
为定值.
【答案】(1) 取值范围是(-∞,-3)∪(-3,0)∪(0,1)
(2)证明过程见解析
【解析】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据PA,PB与y轴相交,舍去k=3,(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得,
.再由
,
得
,
.利用直线PA,PB的方程分别得点M,N的纵坐标,代入化简
可得结论.
优8a44技方元智有智软网公9a957efe限科司心途-学ac6ba10c东点广件慧升
详解:解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.
由题意可知直线l的斜率存在且不为0,
设直线l的方程为y=kx+1(k≠0).
由得
.
依题意,解得k<0或0
又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.
所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
(Ⅱ)设A(x1,y1),B(x2,y2).
由(I)知,
.
直线PA的方程为y–2=.
令x=0,得点M的纵坐标为.
有智费司心升864a112b网ad3d元智慧件术优8a44cf1f法智西东点科3a9ac57d8539软技方公9a957efe-得限b4c8学ac6ba10c广途
同理得点N的纵坐标为.
由,
得
,
.
所以.
所以为定值.
点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.