2018年高考江苏卷(数学)-利用导数求极值

2019年04月17日 浏览:
2018年高考江苏卷

17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为.

(1)用分别表示矩形ABCD和的面积,并确定的取值范围;

(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为

1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).

(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大

【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.

详解:

解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.

公e8fd软得科bdcc慧463a406d-习高网径东方94e9技西得件元b079升优学有b367广e845限途司
过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,

故OE=40cosθ,EC=40sinθ,

则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),

△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).

过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.

令∠GOK=θ0,则sinθ0=,θ0∈(0,).

当θ∈[θ0)时,才能作出满足条件的矩形ABCD,

所以sinθ的取值范围是[,1).

答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为

1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).

(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,

设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),

则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)

=8000k(sinθcosθ+cosθ),θ∈[θ0).

设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),

.

网径东方94e9元b079西科bdcc97a8学470d限96dfc697技西得法途西a5b211af公e8fd西件司广e845软得4f33优有b367升慧463a406d智f1a5cce6-习高,得θ=

当θ∈(θ0)时,,所以f(θ)为增函数;

当θ∈()时,,所以f(θ)为减函数,

因此,当θ=时,f(θ)取到最大值.

答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.

点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.