直线与平面所成的角的定义:
①直线和平面所成的角有三种:
a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.
限秀-学5ebc40bc优的东智心途慧0dda元广司6816a402点件智5950公技cde1f100网有科44b6升学软
b.垂线与平面所成的角:一条直线垂直于平面,则它们所成的角是直角。
c.一条直线和平面平行,或在平面内,则它们所成的角为00.
②取值范围:00≤θ≤900.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
东智心广限秀智元技cde1f10042fc升学学5ebc40bc网司6816a402点有件智5950是优的途公科44b6b091软44a1慧0dda-
最小角定理:
斜线和它在平面内的射影所成的角(即线面角),是斜线和这个平面内的所有直线所成角中最小的角。
件智5950是技cde1f10042fc4e09ebe9司6816a402点-升学途120b公心量慧0dda8d3a学5ebc40bc科44b6b091网秀优的4683元东智心量限秀智软44a1有广
求直线与平面所成的角的方法:
(1)找角:求直线与平面所成角的一般过程:①通过射影转化法,作出直线与平面所成的角;②在三角形中求角的大小.
(2)向量法:设PA是平面α的斜线,,向量n为平面α的法向量,设PA与平面α所成的角为θ,则